Year 9 Knowledge Organiser

Year 9- Indices and Standard Form

The Laws of Indices

$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$

$$
\begin{aligned}
\left(a^{m}\right)^{n} & =a^{m n} \\
a^{-m} & =\frac{1}{a^{m}}
\end{aligned}
$$

Key Words

Indices
Reciprocal
Rounding
Estimate Significant Figure Standard Form
hegartymaths 102-110, 122123, 130,

Laws of Indices- Examples

Simplify each of the following:

1) $a^{6} \times a^{4}=a^{6+4}$
2) $\left(a^{4}\right)^{3}=a^{4 \times 3}$

$$
=a^{10}
$$

$$
=a^{12}
$$

2) $a^{6} \div a^{4}=a^{6-4}$
3) $\frac{5^{2} \times 5^{6}}{5^{4}}=\frac{5^{8}}{5^{4}}$
$=a^{2}$

$$
=5^{8-4}
$$

3) $\left(a^{6}\right)^{4}=a^{6 \times 4}$

$$
=5^{4}
$$

$$
=a^{24}
$$

6) $2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$

Tip- Estimating
When you are asked to
'estimate', you only need an approximate answer. To find this you round the numbers involved to 1 significant figure.

Standard Form

We use standard form to write a very large or a very small number.

Must be $\times 10$
$\rightarrow 10^{b}{ }_{b}$ is an
Must be $1 \leq a<10 \quad$ integer

Standard Form- Examples

Write the following in standard form:

1) $3000=3 \times 10^{3}$
2) $0.00845=8.45 \times 10^{-3}$

$$
3.00=3.0 \times 10^{3}
$$

Estimating- Examples

$$
\begin{gathered}
78.9 \div 7.8 \\
80.0 \div 8.0 \\
10
\end{gathered}
$$

Year 9- Expressions and Formulae

Key Concepts

A formula is a rule written using letters and symbols, where one letter equals an expression of other letters.

When substituting a number into an expression, replace the letter with the given value.

Changing the Subject of a formula involves the same process as solving equations.

Key Words

Substitute Equation Formula Expression Expand

Key Concepts

 Expanding brackets means to multiply. The process for this if different for single and double brackets.
hegartymaths

160-164, 177-184,
780-787, 155, 280-282

Substituting- Examples

1) Find the value of $3 x+2$ when $x=5$

$$
(3 \times 5)+2=17
$$

2) Where $A=b^{2}+c$, find A when $b=2$ and $\mathrm{c}=3$

$$
\begin{aligned}
& A=2^{2}+3 \\
& A=4+3 \\
& A=7
\end{aligned}
$$

Tip
Don't forget that " $3 x$ " means " 3 lots of x ", so you have to multiply the coefficient by the number you substitute in.

Solving Equations - Examples

To solve equations, you need to get the unknown on it's own. To do this, do the inverse to whatever is with the x. Do this to both sides of the equations.

Expanding Brackets- Examples

Expand and simplify where appropriate

1) $7(3+a)=21+7 a$
2) $f(f+6)=f^{2} 6 f$

Expanding Double Brackets- Example $(x+6)(x+4) \quad$ First terms: $x \times x=x^{2}$

Outside terms: $x \times 4=4 x$
$x^{2}+4 x+6 x+24$
$x^{2}+10 x+24$ Last terms: $6 \times 4=24$

Year 9- Dealing with Data

Key Concepts

A sample is a smaller part of a population intended to show what the whole population is like.

Primary Data is data you collect yourself.
Secondary Data is collected by someone else.
Key Words Line Graphs- Example
Data
Sample
Averages
Line of best fit Stem and Leaf

Frequency Table- Examples

Frequency tables are a good way to show data. There are two types- Standard and Grouped.
The type you use depends on the type of data you have collected

Number of Pets	Frequency
0	3
1	5
2	4
$3+$	3

Height	Frequency
$120 \leq x<130$	8
$130 \leq x<140$	12
$140 \leq x<150$	10
$150 \leq x<160$	9
$160 \leq x<190$	11
	50

Estimating Mean from a Frequency Table

Height	Frequency	Midpoint (m)	$\mathrm{m} \times \mathrm{f}$
$120 \leq x<130$	8	125	1000
$130 \leq x<140$	12	135	1620
$140 \leq x<150$	10	145	1450
$150 \leq x<160$	9	155	1395
$160 \leq x<190$	11	175	1925
	50		7390

Stem and Leaf Diagram- Example

Stem and Leaf diagrams allow you to list data. When you have more than 1 of them you can easily compare the distribution of the data to
help you anaylse.

Year 9- Multiplicative Reasoning

Key Concepts

An enlargement changes the size of a shape. It can get larger or smaller, depending on the scale factor.

Two quantities are in direct proportion if they increase (or decrease) by the same ratio. e.g. Number of pens and weight of pens.

Two quantities are inversely proportional if one increases by the same ratio as the other decreases.

Key Words

Scale Factor Enlargement Percentage Compound
Proportion

Compound Measures

Enlargement- Example

Enlarge shape A, scale factor 2, centre (0,0).

Formula

percentage change $=\frac{\text { actual change }}{\text { original amount }} \times 100$

Tip

Percentage profit/loss is the percentage change between cost price and selling price. Use the same formula as percentage change.

Direct/Inverse Proportion- Examples

Direct proportion:

Value of A	32	P	56	20	72
Value of B	20	30	35	R	45

Ratio constant: $20 \div 32=\frac{5}{8}$
hegartymaths 642-647, 90, 97, 719737, 339-342

From A to B we will multiply by $\frac{5}{8}$
From B to A we will divide by $\frac{5}{8}$.
$P=30 \div \frac{5}{8}=48$
$R=20 \times \frac{5}{8}=12.5$

Fractional Scale Factors

Transform
triangle A by
the
enlargement:
Scale factor $\frac{1}{2}$
from centre
$(0,0)$

Negative Scale Factors

When the scale factor is negative, your new shape will be in the other direction from the centre of enlargement.

Multiply the distance between the original vertices and the centre of enlargement by the scale factor.
e.g Enlarge shape A by scale factor -2 about the centre of enlargement $(1,5)$

Year 9- Constructions

Key Concepts

A construction is an accurate drawing. It has to be exact. Using rulers, compasses and protractors properly is crucial in constructions.

Scales are used in maps and other drawings. They allow us to fit very big things, or very small things on our page.

Scales- Example

A scale of
$1 \mathrm{~cm}: 2 m$
...means for every 1 cm measured on a drawing this represents 2 m in real-life.

Basic Construction- Examples

on the line ($B C$)

Tip

To find the real life size from a scale drawing, multiply the distance on your page by the number on the scale.

But make sure your units are the same first!

Key Concept

There are three types of triangle you need to be able to construct:
SAS- Side Angle Side
ASA- Angle Side Angle SSS-Side Side Side

Triangle Construction- Examples

SAS- Side Angle Side
You need a protractor, compass and ruler for these.

ASA- Angle Side Angle
You need a protractor, compass and ruler for these.

SSS-Side Side Side
You just need a compass and ruler for these.

Year 9- Sequences, Inequalities, Equations and Proportion

Key Concept- Sequences
Arithmetic or linear sequences
increase or decrease by a common amount each time.
Geometric series has a common multiple between each term.
Quadratic sequences include an n^{2}. It has a common second difference.
Fibonacci sequences are where you add the two previous terms to find the next term.

Key Words

Nth Term
Inequality
Equation
Proportion

穴 hegartymaths

198, 247, 264-268, 177-184, 339-347

Linear/arithmetic sequence:

a) State the nth term

Difference The $0^{\text {th }}$ term
b) What is the $100^{\text {th }}$ term in the sequence?

$$
\begin{gathered}
3 n+1 \\
3 \times 100+1=301
\end{gathered}
$$

c) Is 100 in this sequence?

$$
\begin{gathered}
3 n+1=100 \\
3 n=99 \\
n=33
\end{gathered}
$$

Yes as 33 is an integer.

Key Concept- Proportion

Variables are directly proportional when the ratio is constant between the quantities.

Variables are inversely proportional when one quantity increases in proportion to the other decreasing.

Proportion - Examples

If Y is directly proportional to x. Where Y $=6$ when $x=3$.

$$
\begin{aligned}
& Y=k x \\
& 6=3 k \\
& 2=k \\
& Y=2 x
\end{aligned}
$$ If Y is inversely proportional to x. Where $Y=5$ when $x=4$.

$Y=k / x$
$5=k / 4$
$20=k$
$Y=20 / x$

Geometric sequence e.g.

Quadratic sequence e.g. $n^{2}+4$ Find the first 3 numbers in the sequence First term: $1^{2}+4=5 \quad$ Third term: $3^{2}+4=13$
Second term: $2^{2}+4=8$

Key Concept- Inequalities

Inequalities show the range of numbers that satisfy a rule.
$x<2$ means x is less than 2
$x \leq 2$ means x is less than or equal to 2
$x>2$ means x is greater than 2
$x \geq 2$ means x is greater than or equal to 2

On a number line we use circles to highlight the key values:
is used for less/greater than
is used for less/greater than

Inequalities- Example

a) State the values of n that satisfy:

Cannot be equal to 2 Can be equal to 3

$$
-1,0,1,2,3
$$

b) Show this inequality on a number line:

Year 9- Circles, Pythagoras and Prisms

Key Concept- Circles

Formula/Examples- Circles

Find the area and circumference to 2 dp .

Circumference $=\pi \times d$

$$
=\pi \times 8=25.13 \mathrm{~cm}
$$

$$
\text { Area }=\pi \times r^{2}
$$

$$
=\pi \times 4^{2}=50.27 \mathrm{~cm}^{2}
$$

Key Concept- Prisms

Volume of a prism = area of cross-section x vertical height

Surface Area is the total area of all the faces of a 3D shape

f: hegartymaths

534-547; 498-501; 570571; 137-139; 572-574

Key Concept- Pythagoras

Pythagoras' theorem and basic trigonometry both only work with right angled triangles.

Pythagoras' Theorem - used to find a missing length when two sides are known

$$
a^{2}+b^{2}=c^{2}
$$

c is always the hypotenuse (longest side)
Example- Cylinders

Volume $=\pi \times 5^{2} \times 13$
$=325 \pi$
$=1021.0 \mathrm{~cm}^{3}$ (to 1 dp)

Examples- Pythagoras' Theorem

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
y^{2}+8^{2}=12^{2} \\
y^{2}=12^{2}-8^{2} \\
y^{2}=80 \\
y=\sqrt{80} \\
y=8.9
\end{gathered}
$$

Key Concept- Errors and Bounds
Upper Bound: The lowest number that rounds to the number given
Lower Bound: The lowest number that round to the next number
Example: The length of a screw is 6 cm to the nearest cm .
Lower Bound $=5.5 \mathrm{~cm}$
Upper Bound $=6.5 \mathrm{~cm}$

Year 9- Graphs

Example- Straight Lines

Key Concept- Simultaneous

Equations

Step 1:
Plot the lines
Step 2:
Find the coordinate of the
intersection

Key Concept- Non-linear graphs
Inverse proportion:

You can then plot this as a graph. It will create a curve shaped graph

Key Concept- ax+by=c

Sometimes, an equation won't be in $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ format. But we can make it so by rearranging to make Y the subject
Or you can substitute $x=0$ into the equation to find the y intercept, then substitude $\mathrm{y}=0$ to find the x -intercept.

Example- Plotting Quadratics

Key Words

$$
\begin{array}{ll}
\text { Linear } & \text { Y-intercept } \\
\text { Non-linear } & \text { Quadratic } \\
\text { Gradient } & \text { Inverse Proportion }
\end{array}
$$

Examples- $\mathrm{ax}+\mathrm{by}=\mathrm{c}$

$$
\begin{array}{rlrl}
6 y-12 x & =30 \\
6 y & =30+12 x \\
y & =5+2 x & 3 x+y & =18 \\
y & =2 x+5 & y & =18-3 x \\
& y & =-3 x+18
\end{array}
$$

Once the subject is Y, we can plot the same as we do with $\mathrm{Y}=\mathrm{Mx}+\mathrm{C}$

Year 9- Probability

Formula- Probability of an outcome

Probability of an outcome $=$ the number of ways the outcome can happen
the number of all possible outcomes

Example- Probability

Key Concept- Theoretical vs. Experimental Probability

Theoretical Probability:	Experimental Probability: The probability you would
What actually happens in reality expect. E.g. Flipping a coin and getting tails $=1 / 2$	e.g. when you flip a coin you don't get tails exactly half of the time

Key Words

Probability
Mutually
Exclusive
Experimental
Bias
Sample Space
Venn Diagram
\& hegartymaths
350-356; 370-380;
670-673; 422-424

Example- Venn Diagrams
We can use Venn diagrams to calculate probabilities.
$P($ Study both $)=\frac{4}{30}$
$P($ Study neither $)=\frac{7}{30}$

Key Concept- Probability Notation

When we are talking about probability, we use the following notation:

$$
P(x)=\begin{gathered}
\text { ' } x \text { ' represents whatever it } \\
\text { is we're talking about }
\end{gathered}
$$

e.g. P(heads) means "The Probability of flipping a heads" P (heads) $=1 / 2$ or 0.5

Key Concept- Mutually Exclusive Events

The probabilities of mutually exclusive events add to 1
The probability offlipping heads is $\frac{1}{2}$
The probability of flipping a tails is $\frac{1}{2}$ Total: $\frac{1}{2}+\frac{1}{2}=1$

Example- Expected Outcomes

We can use experimental probability to make predictions about what we expect to happen in future.
The probability of a blue car is 0.2 ,

- If 10 cars go past I expect to see $0.2 \times 10=2$ blue cars
- If 40 cars go past I expect to see $0.2 \times 40=8$ blue cars
- If 55 cars go past I expect to see $0.2 \times 55=11$ blue cars

Example- Two-way tables

	English	Maths	Sci	Total
Girls	20	13	17	50
Boys	18	15	23	56
Total	38	28	40	106

$$
\begin{aligned}
\text { P(student chose Maths) }) & =28 / 106 \\
P(\text { girl chose science }) & =17 / 40
\end{aligned}
$$

Year 9 Trigonometry

Key Concept

Basic trigonometry only works with right angled triangles (like Pythagoras' Theorem)

Formulae

Basic trigonometry SOHCAHTOA -

used to find a missing side or an angle

Instead of memorizing all 3 of the trigonometric ratios, remember these formula triangles instead.

Key Concept

H = Hypotenuse (longest side, opposite the right angle)
$\mathbf{O}=$ Opposite (opposite the other given angle) A = Adjacent (in between the right angle and the other given angle)

A

最 hegartymaths 498-499, 509-515

SOHCAHTOA to find Lengths- Examples

$\cos 48=\frac{x}{38}$
$x=38 \times \cos 48=25.4 m$

$\sin 31=\frac{x}{21}$
$x=21 \times \sin 31=10.8 m$

$\operatorname{Tan} 5=\frac{17}{x}$

$$
x=\frac{17}{\text { Tan } 58}=10.6 \mathrm{~m}
$$

Key Concept

Two shapes are similar if one is an enlargement of the other.

Two shapes are congruent if they are exactly the same shape. They may be reflected, rotated or translated.

SOHCAHTOA to find Angles- Example

Remember- angles are shifty!
(Press shift on your calculator to get $\sin ^{-1}$)

$\sin x=\frac{8}{10}$
$x=\sin ^{-1}\left(\frac{8}{10}\right)=53.1^{\circ}$

