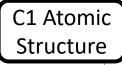
Atoms, elements and compounds

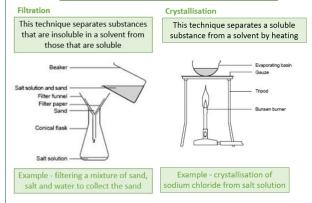
All substances are made of **atoms** that cannot be chemically broken down. It is the smallest part of an **element**.

Elements are made of only one type of atom. Each element has its own **symbol**. e.g. Na is sodium.

Compounds contain more than one type of atom. Naming compounds-Two elements = ide e.g. Na₂S Sodium sulphide Two or more including

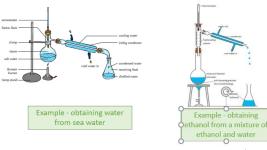
oxygen = **ate** e.g. Na₂SO₄ = sodium sulphate


a) Atoms of an element b) Molecules of an element

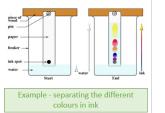

Small numbers (subscripts) after symbols tell you how many of the element BEFORE the number.

Separating mixtures

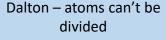
Development of Atomic Model

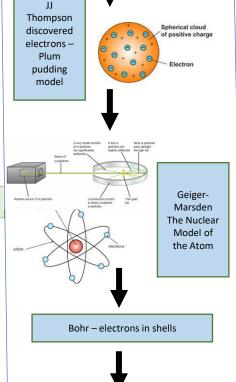

A mixture consists of **two or more** elements or compounds **not** chemically combined together.

Simple distillation Fractional distillation

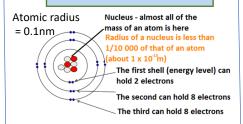

This technique separates a liquid from a mixture by evaporation follow by condensation

This technique differs from distillation only in that it separates a mixture into a number of different parts, called fractions.

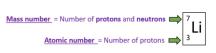



Chromatography

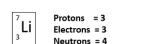
This technique separates small
amounts of dissolved substances by
running a solvent along absorbent
paper

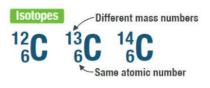


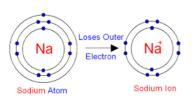
Atomic Model



Chadwick – the neutron


Subatomic Particles


	Mass	Charge	Location
Proton	1	+	nucleus
Neutron	1	0	nucleus
Electron	Very small	-	shells


Number of protons(+) = Number of electrons (-)

Number of neutrons = mass number – atomic number

Atoms lose or gain electrons to form ions

 $1nm = 1x10^{-9}m$