## P2 Energy Transfer by Heating

| Word                      | Definition                                                              |
|---------------------------|-------------------------------------------------------------------------|
| Thermal conductivity      | Rate of thermal energy (heat) transfer through a material               |
| Specific heat<br>capacity | Energy needed to change the temperature of 1kg of a substance by 1°C    |
| Cavity wall insulation    | Insulating layer placed between outer and inner walls of a house        |
| Continuous<br>variable    | A variable which can take any value e.g. temperature                    |
| Categoric<br>variable     | These have values which are names e.g type of material                  |
| Emit                      | Give out (e.g. radiation)                                               |
| Absorb                    | Take in (e.g. radiation)                                                |
| Black body                | A body that absorbs all the radiation incident on it                    |
| Infrared                  | Type of radiation given out by all objects because of their temperature |

Thermal insulators (e.g. bubble wrap) have <u>low</u> thermal conductivity Thermal conductors (e.g. metals) have a <u>high</u> thermal conductivity

The rate of energy transfer from houses can be reduced using insulation (ideally thick layers of materials with low thermal conductivity)



## <u>Equation for specific heat capacity (given in exam)</u> Energy transferred = mass x specific heat capacity x temperature change



## Required practical: measure specific heat capacity of a material



Can use voltmeter, ammeter and stopwatch to measure energy instead of joulemeter Energy = V X I X t

## <u>Method</u>

Measure mass of block using a balance

Measure start temperature using thermometer

Heat block for fixed time - then measure temperature at end

Calculate change in temperature (final temperature-start temperature)

Calculate energy supplied (directly from joulemeter or from voltmeter, ammeter and stopwatch)

Use equation to calculate specific heat capacity

<u>Typical exam question</u>: the value measured for specific heat capacity is higher than true value because some thermal energy spreads out into surroundings rather than heating the block